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i Signal Processing

= Signal processing Is concerned with
= Representation
= Transformation and

= Manipulation
« Of signals and the information they contain.



i Digital Signal Processing

Concern with the
= Digital representation of signals and

= Use of digital processors to

= Analyze
= Modity or

= Extract information from signals.



i Advantages of DSP

s Guaranteed Accuracy

s Perfect reproducibility

= No drift in performance with temperature
s Greater flexibility

= Superior performance

= Adaptive

= Takes the advantages of semiconductor

= Smaller size

= Low cost

= Low power consumption
= Higher speed



i Application areas of DSP

= Image Processing

= Instrumentation

= Speech/audio

= Military

= [Telecommunications

= Biomedical

= Consumer applications



i Disadvantages

= Speed and cost
= Design time
= Finite wordlength problem



Types of Signal

= Continuous-time signal: | ~
= Has infinite number of points | / \.\ /
between two time interval. |/ \\ /
= Defined along a continuum | \ /
of times : \ /
= Independent variables are | \ /
continuous ' — t >

y=sint




i Types of Signal

= Discrete-time signal:
= Defined at discrete times
= The independent variables has discrete values
= Represented as sequence of humbers.
y[n]={x[n]}, -co<n< oo
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i Basic Sequences and Operations

Delaying (Shifting) a sequence

yln] =x[n-n]

Unit sample (impulse) sequence

Exponential sequences

x[n] = Aa"
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i System

= A system performs an operation on a

signal.

X(n) : h(n) y(n)

X(n) is input, Y(n) is output and
h(n) is impulse response

Example: Filter, amplifier, mixer etc.



i Discrete-Time Systems

= Discrete-Time Sequence is a
mathematical operation that maps a
given input sequence x[n] into an
output sequence y[n]

X(n—1 T{.} ——y[n]

y[n] = Tx[n]}



i Example of Discrete-Time Systems

= ]deal Delay System:
Output is M sample delay of input

x(n) M sample v

of
delay

yln]=x[n-M]



i Example of Discrete-Time Systems

= Moving Average System:
= Computes the nth sample of the output
sequence as the average of (M1+M2+1) samples
of the input sequence around the nth sample
= Like a signal moving along a signal

1

y(lﬂ)—lvI ™ 1kZh’,ﬂlxm—k)




i Example of Discrete-Time Systems

s Accumulator:
= Defined as  y(n)= Zx(n)

x(n)

Accumulator

If x(n)=0(n) then y(n)=u(n)



i Example of Discrete-Time Systems

= Memoryless System:

= Output at n depends only on the input
atn

= Don’t depend on the past input

= Example Memoryless Systems
= Square

y[n] = (x[n]y



i Example of Discrete-Time Systems

= Linear System:

If the system satisfies principle of superposition

T{ax [n]+bx,[n]}=aT {x,[n]}+bT {x,[n]}

d
X,(n) é

W)

» P(n)

b 4R T[]
X,(Nn) é k“j
a
Xl(n) T
b
X,(n) - @li) ~




i Example of Discrete-Time Systems

= Shift Invariant System:

x(n)

x(n)

n
K sample | x(n-k) T3 an)
.| delay > | >
n-k
y(n) K samples Hn-)
> T[ ] » —>
delay

Condition: g(n)=y(n-k)

TIx(n-k)]=y(n-k).



i Example of Discrete-Time Systems

= Causality:
= Output depends on the value of the past
history of input

y(ng)=t[x(ng),x(Mg1)-eeeveeneennenn. ]



i Example of Discrete-Time Systems
O Stability

= Produces finite output for finite input

x(n) y(n)

Finite input Finite output

= For LSI system i‘h(n)\ <oc

N=—ac



i Proof

= For finite input

x(k)| < M

S h(k)x(n k)

K=—00

then y(n)| =

y()| <Y |h(k)|x(n—k)
y() < 3" |h(k)|:M
y(n) <MY h(k)

If > h(k) is finite then |y(n)| is finite



i Forward Difference System

= Subtract a delay version
= It depends on future
= Non-causal system

x(n+1)

Y=+ x(m)

51X ©

s Used in lattice structure



i Backward Ditference System

= Subtract a delay version
= Depend on past
= Causal system

x(n) 5 x(n-1) y(n)=x(n)-x(n-1)

s Used in DPCM



+

= Forward difference of one sample delay
becomes backward difference

X(n) .| FD. p |-¥(n),

X(n) y(n)

D FD. |74

[5(n+1)-5(n)[*6(n-1)
(n-1) *[8(n+1)-5(n)]

=

2
TR

o1

x(n) | B.D. y(n)




i Convolution

= Convolution of h(t) and f(t) is defined as

g(t)=h(t)* f (t) :Th(r)f(t—r)dr

= For discrete system:

X(n)

[ hin) yin)

y(n) =h(n)*x(n) = Y h(x(n—i) = 3 x(ih(n i)

|=—00 |=—00

= [SI system has the property of convolution



i FIR filter

= If h(n) has finite nonzero samples then works
as FIR filter

X(n) X(n-1) X(n-2)

y(ng

y(0)=h(0)x(n) +h(1)x(n-1)+h(2)x(n-2)



i [IR Filter

= If h(n) has infinite nonzero samples
then the system becomes as IIR digital
filter

x(n) y(n)

y(n) = Za(i)x(n 1) +Zb(j)Y(n -1



i Significance of Convolution

= Convolution in time domain is the
multiplication in frequency domain.



ﬁ Fourier Series

= Signals are functions of time.

= There are two ways by which we can
represent the signal.

Time Domain Frequency Domain
Representation Representation




= Advantages of Frequency response methods

= Gives a different kind of insight into a system.

= [t focuses on how signals of different frequencies are
represented in a signal. We think in terms of the spectrum of
the signal

= Most of us would rather do algebra than solve differential
equations

= Gives more insight into how to process a signal to remove
noise

= Easier to characterize the frequency content of a noise signal
than it is to give a time description of the noise.



i Summary

= Be able to compute the frequency components
of the signal.
= Be able to predict how the signal will interact

with linear systems and circuits using
frequency response methods.



The Fourier Series

3 i i
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periodic signal can be viewed N
. . . v i
_1 " H -
as a linear composition of sine o 11 5 ot 3 a4 4 e
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“A periodic signal can always be represented as a sum of sinusoids,

This representation is now called a Fourier Series ”



How a signal can be built from a sum of
sinusoids?

[w-u]
: .t : .t
Sigl ti= Z ai-cns<2-n 'l'f)"'hi'sm(‘j"“ 1?)

1=1
Example:-
Here is a single sine signal

The expression for this signal is
Sig(t) =1 * sin(2nt/T)
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In fact, the way we are building this signal by using Fourier's results.

We know the formula for the series that converges to a square wave.
Here's the formula. For a perfectly accurate representation, let N go to
infinity.

-1

1 Rl
03
0.6 N
04
02 (1/n)sin{n@ot)
0
-0.2 -
oa n=1
-oé n odd
-0.8 : :
0 04 08 12 16

2
0.4 02 1.2 1.6




Formulas of Fourier Series expansion:-

N
f{t) = oo +Encns(nmu’r) + basin{naoet)

h=1

On = (Eﬂ')J f{t)cos{nagt)dt
1]

bp = (Eﬂ')j f{t)sin(hagt)dt
0

6 = (1/T) | f(t)dt
0



Fourier Transforms

EThe Fourier transform (FT) is a generalization of the Fourier
series.

B Instead of sines and cosines, as in a Fourier series, the Fourier
transform uses exponentials and complex numbers.

EFor a signal or function £f(t), the Fourier transform is defined as

Fla)= Tf{t}e'iﬂdt

—_

Inverse Fourier transform is defined as

fit)= % TF{m]emdm



Summary

B In general Fourier Analysis can be used to
convert the signal domain from time to
frequency

B This will help us to interpret the result more
quickly and accurately, also changes the system
representation to laplace domain.



i Significance of Impulse response

FT of Delta function contains all frequency

5(t)

F.T.

F(w)

—

| F(w)

)

W

System can be examined by all frequencies



Frequency Domain Representation
f Discreet Time Signal systems.

jw . +00 — jwk
H(e )= Zk:_w h(k)e
e ™ = coswk — jsinwk

. WnN, i(N-DY
S|n(7)e 2

He'" )=
. W
sm(E)



Frequency Domain Representation
f Discreet Time Signal systems.

_1 T iw jwn
(n) =~ LH(e e dw

h(n)
h(n) == [e™ dw
2 —W

Cco

**ldeal low pass is not casual and stable

It is possible to design filter using low pass. But we need an infinite taps. And if
the number of delay tap) is many it is possible to make it sharp and finite.



General definition for
even and odd sequence.

X,(N)=X, (-n) Xo(N)=-X, (-n)

x(N) = X, (N) + X, ()

X(_n) = X (n) — X5 (n)

=

X, (N) = =[x(n) + x*(—n)]  Even sequence:

X, (N) =

2
% :x(n) _x* (—n): Odd sequence:



General definition for
i even and odd sequence.

X(e") =X, (") +(e")

Even Partis: x_(e'™) = x(e™) +x*(e ")

Odd Part is: X, (e JW) — -x(e jW) . X*(e—jW)'

N NP

X, (") =X, *@E™)
X, (e™)y==X_*@")



Relationship Between Time
omain and Frequency Domain.

Aﬂ-l

1 —jw —jw jw
F[R.[x[n]]]= E[X(e ") +*x(e7™) = x, (e’ )] where: R, =Real part
F =Fourier transform

Transforming Even Part by Fourier Transform is equal to Real part
1 . _
X m]= S [x@™) + x*@™)]
= R [x(e™)]

X *(Nn) E» X = (e ™)
X *(—n) > X * (e ™)

The Real part Sequence transformed by Fourier transform equal to even part

R[xm)] ™ X, (e™)



Properties of Fourier Transform
In Discrete

earity

Asxq(n)+ayx,(n)

g ap Xy (eM)+apx,(eM)
Time Shift and Freguenecy Shift
-lwnD W
x (n-D)= e’ .x(eJ ) Time Shift

For a shift in time the out put is the multiplication in frequency.

e™x(n) F X(el™M) Frequency Shift

Frequency shift is important in communication engineering because
shift in frequency does not make any overlap.



Properties of Fourier Transform

“h In Discrete

X(n) 1

. . _ F Jw
X(n) is real signal: X(-n) "1 X*(e )

X(e-v)

nx(n) FojOOCED

dw

y(n) = Z X(k)h(n—k) =x(n) ®h(n) Time Domain.

y(e jW) =X (e jw)-H (e jW) Frequency Domain



Properties of Fourier Transform

:h In Discrete

2

E = Zm‘x(n)‘ el ”X(e JW)‘ dey  Where E=energy

y(n) — W(n).x(n) Multiplication in Time Domain but
convolution in frequency domain
T

y(e™™) = i j x(e™).w(e! ™) dg

hl ® h2 Hl' H 5 Discrete convolution

hl'hz H1 ®H 2 Integration convolution



Chapter- 4
Z-Transform

_\"® -n Where Z is complex and
X(Z) — Zn:_oo x(n)z can be found any where

**Z Is a complex number, but in Fourier transform
IS represented in unit circle. And it is similar to laplace
transform which is analogue.

“*Z is infinite but it is possible to make it convergent.



ﬁ Z-Transform

For sequence where transformed by Z-transform
% n_-n . .
X(Z) = Zn—o a ’z Geometric Series

X(2)=), (@az )" =1+az"+(az")* +..

if ‘az—1‘<1’ then X[Z]:l—az‘l where

‘z‘ < ‘a‘ The condition for convergence



i Properties of Z-Transform

Let x(n) and y(n) be any two functions and let X(z) and Y(z) be
their respective transforms. Then for any consonants aand b

ax(n)+by(n) ©  ax(z)+by(z)

x(n+k) 7 2x(2)
If w(n)=x(n)*y(n) then
w(z) = X(2)Y(2)

y(n)=2 h(k)x(n-k)  *  y(z)=H(2).X(2)



Properties of Z-Transform

Relationships between Fourier transform and Z-transform
X(z)=> x(n)z™"
XeM) =2 x(ne ™" Z=re"

Range of convergence (ROC) for Z-transform

If the sequence is right sided then ROC is:

If the sequence is left sided then ROC is:

If the sequence is both sided then the poleis %
outside or inside the ring. It is Like donat shape \




Inverse of Z-Transform

Method 1

dz

X(n) = Ziﬂji:x(z).zn —

Method 2

1
1-0.5z27"

X(2) =




* Inverse of Z-Transform
I

spection method 1
n 7 Z|>|ad
a a(n) ] 1_azt ‘ ‘ ‘ ‘
—a'a(-n-1) 1
1-azt  |4<la
Partial fraction Expansion method
M -1
S b2 o BILLE-6)
X(Z) — l|i|:O - N 1 d -1
k:Oakz_k aonzl( _( K2 )

CORDIFES A =42



* Inverse of Z-Transform
(@)

wer series Expansion

X(2) =) x(Mz " =+x(-2)27 +x(-1)z 7 + x(0) + x(1)z ...

x(z) =log(1+az ™)

( 1)n+1 X(n) Z ( 1)n+1anz n

N

log(1+x)=>

x(n) = (=1)™ % n>1



Chapter 3
ampling of Continuous-Time Signals

>ampling:

To use digital signal processing methods on analogue signal,

It is necessary to represent the signal as a sequence of

numbers. this is commonly done by sampling the analogue

signal, denoted X_(t), periodically to produce the sequence
X[n]= X, (nT), -wo<n<ew where: T=sampling period.

X~ C/D [~ XIn]=X,(nT),
T

Block diagram representation of an ideal continuous-to-
discrete (C/D) converter.




‘.h Two examples for sampling
good irreversible

b. Analog frequency = 0.09 of sampling rate d. Analog frequency = 0.95 of sampling rate

Ty w*lmmﬁ[
lF

J:dvﬁhuUﬂfUdﬂuuU

Amphitude
o

A

3 Time (or sample number)

Tiume (or sample number)



;ampling of Continuous-Time Signals

~ourier transform X, (1QQ) = an (t)e‘thdt

in analogue :

Where:() =frequency

X, (t) = 1 j X, (jQ)e!dO
2

x(n) =X, (NT)=— .[X (jQ)e' ™ 40 Not periodic

X(n) =— IX (ejw)ejwnda) periodic (between -IT to IT)



ampling of Continuous-Time Signals

>ampling Theorem: If a signal X,(t) has a band limited Fourier
transform X,(j ), such that X_(j2)=0 for @22 T1F, then X_(t) can be
uniquely constructed from equally sampled spaces

Xa(1), -oo<n< oo if 1T >2F,,.

If the Fourier transform of Not periodic X_(t) is defined as:
+00
- . —jQt
X, (1Q) = jxa (t)e "~ dt

then If (e’?)is evaluated for frequency w=QT then, X (") is
related to x_(jo ) by:

X (e th) — TEZ:):_OO Xa(jQ_l_ J 2T_7T k) where: K=integer



Recovery of Analogue
* Signal From Sampling (1)

stration of Sampling:
X, (jQ )

A
AV WA




Recovery of Analogue
Signal From Sampling (2)

he above figures:

Figure (a) assume that Xa(iQ)=0_for_|0)>Qy =27F, tne
Frequency F, is called

Figure (b) depicts the case when 1/T>2F so that the image of
transform don’t overlap into the base band |2 < 24,

Figure (c) on the other hand shows the case 1/T>2F In this

case the image centered at 2 IT/T overlaps into the base band.
This condition, where a high frequency seemingly takes on the

identity of the lower frequency is called

Aliasing can be avoided only if the Fourier transform is band limited and
The sampling frequency (1/T) is equal to at least twice the Niguist Frequency
(L/IT>2F,)



Recovery of Analogue
Signal From Sampling (3)

nder the condition 1/T > 2F, the Fourier transform of the sequence of
sample is proportional to the analogue signal in the base band; i.e.,

jQT

X(e )= ?X(JQ)

Using this result, it can be shown that the original signal can be
related to the seguence of samples by [nterpolation Formula

sin[z(t—nT)/T || interpolation

X_ (1) = X (nT ormula
0= 26 = S| ™

If the samples of a band limited analogue signal taken at a rate of at least
twice the Niguist Frequency, it is possible to reconstruct the orignal
analogue signal using the above equation.



Recovery of Analogue
Signal From Sampling (4)

seneral formula for

X, ()= ZCK¢k (t) Where:  C, = sampling Value

k=0 ?. = Sink
Low Pass Filter
Band width
/N /1\ Where: Q. s
| Cutoff frequency
— Qs —QC — QN QN Qc Qs
s —ON

It Qy <Q,<Q,—-Qy thenitis possible to recover. If the above
condition is not set, then aliasing will be produced.



Recovery of Analogue
:h Signal From Sampling (5)

er to avoid aliasing (distortion)

Q. -Q, >Q, Condition for anti aliasing

(2s > 2C2,,| Nyquist Frequency Rate

Since ¢ :2_” we can write the above equation as:
S

FS
FN<7 QS > ZQN

T
QN<?



Recovery of Analogue
Signal From Sampling (5)

X (jQ . :
1 (J62) Fig. (a) Fourier transform of

band limited input signal

Q

Fig. (b) Fourier transform of
Sampled input Plotted as

1
T function of continuous-time
Frequency
| | | Q

. ®  z
T xzeifﬂ) ! Fig. (c) Fourier transform
T —HE") A X(e')  of sequence
Samples and Frequency
Response H(e/v) of
. | ®___discrete time system
R a’C\ o Plotted Vs. @
—w T



Changing The Sampling Rate Using
Discrete-Time Processing

Sampling Rate Reduction by an Integer Factor

Decimation/Downsampling/Compressor
The process of sampling rate reduction is called Decimation.

The sampling rate of a sequence can be reduced by “sampling it, i.e., by
defining a new sequence

X4[N] =X[NM ] = x_(nMT)

can be obtained directly from X, (t) by sampling with period
T'=MT .Furthermore, if  x (jQ)=0_for _|Q>Q, then x,[n]

Is an exact representation of Xx.(t) if 7/T'= 7;/(|\/|T) > QN
That is, the sampling rate can be reduced by a factor of IV with out aliasing

If the original sampling rate was at least |Vl times the
The operation of reducing the sampling rate is called downsampllng

or decimation.



Changing The Sampling Rate Using
i Discrete-Time Processing

Sampling Rate Reduction by an Integer Factor

Representation of Downsampler or discrete-time sampler

x [n Xg[N]=X[NM]
[ ] > 1 M i >
Sampling Sampling
period T period T'=MT

We discussed that the discreet-time Furrier Transform of
x[n]=x,(nT) s

VR | 0, 27K
G )=?Zk_ OOXC(J—— J—)



Changing The Sampling Rate Using
i Discrete-Time Processing

Sampling Rate Reduction by an Integer Factor

Similarly, the discreet-time Furrier Transform of

X;[N]=X[nNM]=X.(nMT)  Wwith T'=MT is

iw 1 +00 . Q) 27Zk
Xd(eJ ):sz:_wxc(JT._J T )

Now Since T'=MT , we can write the above Equation as

- 1 400 . Q) ] 27zl’
X eJW = — X — | —



Changing The Sampling Rate Using
i Discrete-Time Processing

Sampling Rate Reduction by an Integer Factor

Equation for Decimation in Frequency Domain when
In the above equation Is expressed as

| 1 _ | .
Xd (ejW) :_ZM 1X (ej(a)/M—Zﬂl/M)

M 1=0
LowGp;ailrs].f Iilter R 1 y >
x [n] Cutoff=IT/M X4 [N] X4[N]=X[nM]
Sampling Sampling Sampling

period T period T period T'=MT



Changing The Sampling Rate Using
Discrete-Time Processing

Frequency-domain illustration of downsampling

X (1€ Fig. (a) Shows the Fourier transform
1 a bandlimited continuous time
signal O

-Q
N £ Fig. (b) Shows the Fourier transform
(a) of the impulse train of
1| x.(jo), x@ samples obtained with
/\ T \ /Yamplmg Period T.
\ \
_2_7[ _QN QN -
T (b) T Fig. (c) Shows X (')
1 and related to
/\ T\ Fi9.(b).
| | \
—2r - — Wy



Changing The Sampling Rate Using
Discrete-Time Processing

hiinued

LK)

T~ \

-2z -7z 7 2% w=QT

(D)
Fig. (d) Shows the discrete-time
Fourier transform of downsampled

sequence when M=2 X, (¥ (M =2)
1
=
A _cx 2% 4r _2n 0O
T T L | T
-
(e)

Fig. (e) Shows the discrete-time Fourier transform of the downsampled sequence
plotted as a function of the continuous time frequency variable o



Changing The Sampling Rate Using
Discrete-Time Processing

Increasing the Sampling Rate by an Integer Factor

Interpolation
Increasing the sampling rate involves operations analogous to D/C

Conversion. To see this consider a signal X [NJwhose sampling rate
wish to increase by an integer factor of L. If we consider the underlying
Continuous-time signal X.(t), the objective is to obtain samples

Xi (n) — Xc (nT )
Where T from the sequence of samples

T'=
L

X[n]=x.(nT)
The operation of increasing the sampling rate is referred as

Upsampling.

It is clear from the above two equation that

x[n=x[n/L]=x,(nT /L),  n=0+ls2l..




Changing The Sampling Rate Using
i Discrete-Time Processing

Increasing the Sampling Rate by an Integer Factor

: Low pass filter
1 L Gain=1
x [n] X.[n] Cutoff=IT/L X[n]
S li
pirrri]gdlr]lg Sampling Sampling
period T'=T/L period T'=T/L

The above figure show a system for obtaining *l"l
x [n]from using only discreet-time processing.

The System on the left is called Sampling rate Expander or
simply an expander. It's out put is



Changing The Sampling Rate Using
i Discrete-Time Processing

Increasing the Sampling Rate by an Integer Factor

Xe[n] — {X[H/L], n=0+L+2L,...

0, otherwise,

Or equivalently,

o0

X.[nN]= > x[k]6[n—KL]

k=—00

The system on the right (above figure) is a lowpass discrete-
time system with cutoff frequency on Or equivalently, i and
gain L. This system plays a role similar to the ideal D/C
converter.



Changing The Sampling Rate Using
i Discrete-Time Processing

Increasing the Sampling Rate by an Integer Factor

The Fourier transform of can be expressed as
X, (e)”) = Z(Zf_oo x[k]So[n — KL])a‘j“’”
N=—0o0

X,[n] o0

= > KR = X (")

k=—00

Thus the Fourier transform of the out put of the expander
Is a frequency scaled version of the Fourier transform of

the input, i.e., O Isreplaced by O sothat w IS
Normalized bywp = QT



Changing The Sampling Rate Using

Discrete-Time Processing
Frequency-domain illustration of interplation

Fig. (a) Shows a bandlimited continuous

/1\ time Fourier transform
Q

-Q, Q, Fig. (b) Shows the discrete-time
(@) | Fourier transform of the sequenc
. x(e' x[n] = x_(nT),where _7/T =Q,
/\/T/
\ \
— — T
21 T (b) 27 w=O0T

Fig. (c) Shows X(e'*)

11 x(e1” according to the

T above equation,
M/ M/ B
| | |

T2 g w=QT’



Changing The Sampling Rate Using
Discrete-Time Processing

ntinued H.(e')
L
\ \
2 - oz T T 2r w=QT
L (D) L
X, (e
1L 1C)
— o —r X T T 2r w=QT
L L
(€)

Fig. (e) Shows the the Fourier transform of the desired signal x[n] We see that X, (e™)
Can be obtained from x (eiv) by correcting the amplitude scale from 1/T to 1/T’
and by removing all the frequency-scaled images Oer(ej“’) except at integer
multiple of 2IT.



Changing The Sampling Rate
i By a Noninteger Factor

+ By combining decimation and interpolation
it is possible to change the sampling rate
by noninteger factor.

+ An interpolator which decrease the
sampling period from T to T/L, Followed by
Decimator which increase the sampling
period by M, produce an oufjut sequence
that has an effective sampling period of
T'=TM/L.

(See the following fig.)




Changing The Sampling Rate
By a Noninteger Factor

Imterpolator— Decimator

Low pass filter| | ! JLow pass filter
— T L —p Gain=L — L Gain=1 . EE— lM —t—

| T - ~ —
X [n]: X.[n]| cutoff=rL iX'IEn] Cutoff=TIM | §[n] L %,[N]
e _: L _!
Sampli;rg T/L TiL T/L TM/L
Period:

System for changing the sampling rate by a noninteger factor.

Low pass filter
Gain=L
—FTL ——”| Cutoff=Il/lL [ lM —
x [n] X[N] | minaoL, mwwmy |XIN] X,[n]
Sampling
Period: T T/L T/L TMIL

Simplified system in which the decimation
and interpolation filters are combined.



Practical Consideration in AD/DA conversion

ractical Problems:
+ Continuous-time signals are not band limited
+ Ideal lowpass filter is impossible to be realized

Prefiltering to Avoid Aliasing
When processing analogue system if the input signal Is
not band limited or if the Nyquist frequency of the input is
to high, prefiltering is often used to avoid aliasing.

X(n)
=P Prefiltering [T Sample

Prefiltering the analogue signal IT
to reduce anti-aliasing



Continued.

. f .- . . - _
t 'AntlFiaI“aS'n% C/D | _Dlsgrette = D/C [r—
X® | Fiter o0 « [ [time System [\ 7y 0
H.,.(J€2)

Fig. Use of Prefiltering to avoid aliasing

For an ideal lowpass anti-aliasing filter (above fig.) behaves as a linear time-
iInvariant system with frequency response given by the following equation even
When x_ (jQ) is not bandlimited.

0, ‘Q‘>7z/T.

In practice, the frequency response H..(J€2)can not be ideally bandlimited, but H__(j<)
Can be made small for \Q\<7T/T s0 that the aliasing is minimized. In this case, the
Overall frequency response of the system in the above fig. would be approximately

Her (JQ) = H, (JOHE™)



Chapter-7

| Digital Filter Design
er can be defined as a system that modifies certain

frequencies relative to others.
Digital filter is a linear shift invariance system (LIS).
The designing filter involves the following stages:
1)  Desired characteristics (Specification) of the system.

2)  Approximation of the specification using a casual
discrete-time system.

3y The realization of the system (building the filter by finite
arithmetic computation.




Design of Discrete-Time IIR Filters From
Continuous-Time Filters

traditional approach to the design of discrete-time IIR
filters involves the transformation of continuous-time filter
Into a discrete-time filter meeting prescribed specification.

1. Filter Design by Impulse Invariance

Analogue filter can be changed to digital filter by sampling the
Impulse response h(t) of analogue. (concept of impulse invariance)

Analogue Digital Filter
h(t) | gue_| h(n)I : |

In the impulse invariance design procedure the impulse response of the
discrete-time filter is chosen as equally spaced samples of the impulse
response of the continuous-time filter; 1.e.

h[n]=T;h.(nTy)  Where: T =sampling interval



Continued..

velop the transformation (from continuous-time to discrete-time), let
us consider the simple function of the continuous time filter expressed in
terms of partial fraction expression, as:

H, (s)= > A

The corresponding impulse response is

rilAkeSkt t> O,
0, t <O.

hc (t) = 9

"

The Impulse response of the discrete-time filter obtained by sampling T,h (t) is
> T,
Sn
h[n]=T,h.(nTy) = ZTd Ace™ “uln]
k=1

N
— ZTO, A e uln]
k=1



Continued..

he system function H (z) of the discrete-time filter is therefore given by

H (z):i Ts A

k:1 1_ eSde Z—l

2. Bilinear Transformation

“ This technique have in distortion of frequency axis.
% Avoid the problem of aliasing.

With H,(s) denoting the continuous-time system function and H(z) the discrete-time
System function, the bilinear transformation corresponds to replacing s by

2 (1-7"1

That is, _

H(z)=H, |2 (l_zlj |

T, \1+z™




FIR Design by Window

filter design are based on transformation of continuous-
time IIR system in to Discrete time system.
In contrast, FIR filters are almost entirely restricted to
discrete-time implementations.
The design technigue for FIR filters are based on directly
approximating the desired frequency response of the
discrete-time system,

The simplest method of FIR filter design is called the
Window method.

This method generally begins with an ideal desired frequency response
that can be represented as:

H, (€)= 3 h,[n]e "

N=—o0



Continued...

ere Hy[n] is the corresponding impulse response
sequence, which can be expressed in terms of H (el") as

_ 1 joyajon
hd[n]_ﬂLTHd(e )elde

To obtain a casual FIR filter from Hy[n] is to define a new
system with impulse response h[n] given by

h [n] Wil 0<n<M,
n —
> otherwise.



Cﬁtinued...

More generally we can represent h[n] as the product of
desired impulse response and a finite-duration
“window” w[n]; i.e.’

hin] = hy[njw{n],

Where for simple truncation as in above equation the
window is the rectangular window

L, 0<n<M,
w [n] = {o,

otherwise.

It follows from the modulation or windowing theorem that

H (el = %j’; H., (&)W (€' )d o



Properties of commonly used windows

So ommonly used windows are defined by the following equations:

L O0<n<M,
Rectangular W[”]:{ .
0, otherwise.

2n/M, 0<n<M /2
Bartlett w [n] = {2 2n/|v| M/2<n<M,
(t rangu | ar) otherwise

Hanning W[n]:{

0.5-0.5cos(2/m/ M), O<n<<M,

0 otherwise.

0.54-0.46cos(2m/M), 0<n<M,
Hamming win] 0 otherwise.



The Kaiser Window Filter Design Method

‘he Kaiser window is defined as

(1L [BA-[(n—-a)/a]?)?2] 0<n<M,
I, (B)

wln] =+

0, otherwise.

"

Where a=M/2, and | (-) represents the zero-order
modified Bessel function of the first kind.



:I;operties of Linear phase FIR Filter

he Shape of the impulse response defined by Equation.
~ M -1

H@) =2 hm=2"=2""2 h(mz" "
n=0 n=0

The frequency response of the above system is

. M_l -
HE™)=> h(ne"-z<w<r
n=0

. i M -1 i .
Taking £H(e'”)=-awwhere «=—— in linear phase

and with symmetry condition h(n)=h(M —1—n)

1) Case 1 when M is odd

o M-l Integer

2



Continued..

Case 2 when M is even

_M-1 " Non integer
2

For other linear phase /H(e!”)=p-aw and anti symmetric
condition h(n) =—h(m—-1—n)hich is opposite of symmetry.

(04

1) Case 1 when M is odd

a:% integer

2) Case 2 when M is even

M-1 _
“=—— Non integer



Of FIR Filters With Generalized Linear
Phase

ype |

In designing a causal Type I linear phase FIR filter, it is convenient first to
consider the design of a zero-phase filter, i.e., one for which

n[n] = h,[-n]

and then to insert sufficient de ay to make it causal.

Type | For Linear phase and symmetry
M-1
M: Odd, B:O, o = T

h (nN)=h(M —1-n) Symmetry condition
| M—1/2 oM
H (e!) :{ > a(n)cos W.n}e 2
n=0

a (0) = h(%) Is the middle sample



Of FIR Filters With Generalized Linear
Phase

ype I
A Type II causal filter is one for which h[n]=0 outside the rangeld<nh<M

, With filter length (M+1) even, I.e.

M: even, and with the symmetry property

h (n)=h(M —1—n)
=0 and g :MT_l Not integer

The frequency response H (e’*) can be expressed in the form

H (el”) = {be(n) cos(w(n—1/ 2)}e"“M21

When  p(n) = 2h(%— n),n=21,2,...(M +1/2),



Of FIR Filters With Generalized Linear

Phase
ype Il
For Linear Anti-symmetric
M-1
When 8 = wl2 and = T integer

h (n)=-h(M -1-n)  Anti-symmetric

The frequency response H (e'”) can be expressed in the form

M-l ] M —1
M- T B
J[E—(T)Co}

H (e!?) = ic(n)sin(a)n) e

M -1
Where C€(N) = Zh(T)

at H (w)=0_for_o=0_w=x




Of FIR Filters With Generalized Linear

i Phase
ype IV

For Linear Anti-symmetric

M -1
When,B =712 and = T not integer

h (n)=-h(M -1-n)  Anti-symmetric

The frequency response H (e'”) can be expressed in the form

M M -1
j[f_a)(—_)}
e 2 2

H (e!?) = id (n)sin[a(n —%)]

M
where  d(n)=2h(==-n)

at ©=0H (0)=0  zZH(0)=e!"? =]



Thank you all



