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Signal Processing 

 Signal processing is concerned with  

 Representation 

 Transformation and 

 Manipulation 

 of signals and the information they contain.  



Digital Signal Processing 

Concern with the  

 Digital representation of signals and 

 Use of digital processors to 

 Analyze 

 Modify or 

 Extract information from signals. 



Advantages of DSP 

 Guaranteed Accuracy 

 Perfect reproducibility 

 No drift in performance with temperature 

 Greater flexibility 

 Superior performance 

 Adaptive 

 Takes the advantages of semiconductor 

 Smaller size 

 Low cost 

 Low power consumption 

 Higher speed 



 Image Processing 

 Instrumentation 

 Speech/audio 

 Military 

 Telecommunications 

 Biomedical 

 Consumer applications 

 

Application areas of DSP 



Disadvantages 

 Speed and cost 

 Design time 

 Finite wordlength problem 



Types of Signal 

 Continuous-time signal: 
 Has infinite number of points 

between two time interval. 

 Defined along a continuum 
of times 

 Independent variables are 
continuous 

     y=sint 
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Types of Signal 

 Discrete-time signal: 
 Defined at discrete times  

 The independent variables has discrete values  

 Represented as sequence of numbers. 

    y[n]={x[n]},  -∞<n< ∞ 

 

 



Basic Sequences and Operations 
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Unit sample (impulse) sequence 
 

Delaying (Shifting) a sequence 

Unit step sequence 

 

Exponential sequences 
 



System 

 A system performs an operation on a    

    signal. 

 

   

X(n) is input, Y(n) is output and 

h(n) is impulse response 

 

Example: Filter, amplifier, mixer etc. 

 

x(n) 
   h(n) 

y(n) 



Discrete-Time Systems 

 Discrete-Time Sequence is a 
mathematical operation that maps a 
given input sequence x[n] into an 
output sequence y[n] 
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Example of Discrete-Time Systems 

 Ideal Delay System: 
  Output is M sample delay of input 

 

M sample       

    of     

  delay 

x(n) y(n) 

][][ Mnxny 



Example of Discrete-Time Systems 

 Moving Average System: 
 Computes the nth sample of the output 

sequence as the average of  (M1+M2+1) samples  

of the input sequence around the nth sample  

 Like a signal moving along a signal 
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Example of Discrete-Time Systems 

 Accumulator: 

 Defined as 

 

 

 

 

If x(n)=δ(n)  then y(n)=u(n) 
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Accumulator 
x(n) y(n) 



Example of Discrete-Time Systems 

 Memoryless System: 

 Output at n depends only on the input 
at n 

 Don’t depend on the past input 

 Example Memoryless Systems 

 Square 
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Example of Discrete-Time Systems 

 Linear System: 
 If the system satisfies principle of superposition 
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Example of Discrete-Time Systems 

 Shift Invariant System: 

 

 

 

 

 

 Condition: q(n)=y(n-k) 

                T[x(n-k)]=y(n-k).  

K sample 
delay 

x(n) 
x(n-k) 

T[  ] 

q(n) 

K samples 
delay 

x(n) 
y(n) 

T[  ] 

y(n-k) 



Example of Discrete-Time Systems 

 Causality:  

 Output depends on the value of the past 
history of input 

y(n0)=f[x(n0),x(n0-1)…………….] 



Example of Discrete-Time Systems 

 Stability 

 Produces finite output for finite input 

 

 

 

 

 

 

 For LSI system  

 

   h(n) 
x(n) y(n) 

Finite input Finite output 
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Proof  

 For finite input 
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Forward Difference System 

 Subtract a delay version  

 It depends on future 

 Non-causal system 

 

 

 

 

 

 Used in lattice structure 

D 
x(n+1) x(n) y(n)=x(n+1)-x(n) 

- 



Backward Difference System 

 Subtract a delay version 

 Depend on past 

 Causal system 

 

 

 

 

 Used in DPCM 

 

D 
x(n) x(n-1) y(n)=x(n)-x(n-1) 

- 



 Forward difference of one sample delay 
becomes backward difference 

 

h(n)=[δ(n+1)-δ(n)]*δ(n-1) 
h(n)= δ(n-1) *[δ(n+1)-δ(n)] 
h(n)=δ(n)-δ(n-1) 

F.D. D X(n) y(n) 

F.D. D 
X(n) y(n) 

B.D. x(n) y(n) 



Convolution 

 Convolution of h(t) and f(t) is defined as 

 

 

 For discrete system: 

 

 

 

 

 

 LSI system has the property of convolution 
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   h(n) 
x(n) y(n) 



FIR filter 

 If h(n) has finite nonzero samples then works 
as FIR filter 

 D D 

∑ 

h0 h1 h2 

X(n) 
X(n-1) X(n-2) 

y(n) 

y(n)=h(0)x(n)+h(1)x(n-1)+h(2)x(n-2)  



IIR Filter 

 If h(n) has infinite nonzero samples 
then the system becomes as IIR digital 
filter  

a 

 b 

x(n) 
y(n) 
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Significance of Convolution 

 Convolution in time domain is the 
multiplication in frequency domain. 

 



Fourier Series 

 Signals are functions of time. 

 There are two ways by which we can 
represent the signal. 

 

 

 

Time Domain 

Representation 

Frequency Domain 

Representation 
Signal 



 Advantages of Frequency response methods 
 

 Gives a different kind of insight into a system.  
 

 It focuses on how signals of different frequencies are 
represented in a signal. We think in terms of the spectrum of 
the signal 
 

 Most of us would rather do algebra than solve differential 
equations 
 

 Gives more insight into how to process a signal to remove 
noise 
 

 Easier to characterize the frequency content of a noise signal 
than it is to give a time description of the noise.  

 



 Be able to compute the frequency components 

of the signal.  

 Be able to predict how the signal will interact 
with linear systems and circuits using 
frequency response methods. 

Summary 



The Fourier Series  

 

“A periodic signal can always be represented as a sum of sinusoids,  

This representation is now called a Fourier Series ” 

Fourier, doing heat transfer 
work, demonstrated that any 
periodic signal can be viewed 
as a linear composition of sine 
waves  



How a signal can be built from a sum of 
sinusoids?  

Example:- 

Here is a single sine signal 

The expression for this signal is 

Sig(t) = 1 * sin(2пt/T) 

 

+ (1/3)sin(6пt/T) + (1/5)sin(10пt/T) 

49th  

Multiple 

79th  

Multiple 



In fact, the way we are building this signal by using Fourier's results.  
 
We know the formula for the series that converges to a square wave. 
Here's the formula. For a perfectly accurate representation, let N go to 
infinity.  



Formulas of Fourier Series expansion:-  



Fourier Transforms  

 

The Fourier transform (FT) is a generalization of the Fourier 
series.  
 

Instead of sines and cosines, as in a Fourier series, the Fourier 
transform uses exponentials and complex numbers.  
 

For a signal or function f(t), the Fourier transform is defined as  

Inverse Fourier transform is defined as  



 

 In general Fourier Analysis can be used to 
convert the signal domain from time to 
frequency 

 

 This will  help us to interpret the result more 
quickly and accurately, also changes the system 
representation to laplace domain. 

Summary 



Significance of Impulse response 

F.T. δ(t) F(w) 

F(w) 

w t 

δ(t) 

FT of Delta function contains all frequency 

System can be examined by all frequencies 

FT 



Frequency Domain Representation 

Of Discreet Time Signal systems. 
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Frequency Domain Representation 

Of Discreet Time Signal systems. 
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The Inverse of frequency representation of Fourier transform   

If we know the Impulse response we can use the above equation to 

design filter using ideal low pass filter where the h(n) is: 
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Ideal low pass is not casual and stable 

It is possible to design filter using low pass. But we need an infinite taps. And if 

the number of delay tap) is many it is possible to make it sharp and finite. 



General definition for  

even and odd sequence. 
Even sequence:  

Xe(n)=Xe (-n) 

 Odd sequence:  

Xo(n)=-X0 (-n) 

 1. For any sequence in time domain   
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 Odd sequence:  



General definition for  

even and odd sequence. 

 1. For Fourier transform in frequency domain  
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Relationship Between Time 

Domain and Frequency Domain. 

 where the real part Re of the signal is even part of the sequence 
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 Transforming Even Part by Fourier Transform is equal to Real part  

 where: Re =Real part  

             F =Fourier transform 
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Properties of Fourier Transform 

 In Discrete 

 Linearity 

A1x1(n)+a2x2(n)                    a1x1(e
jw)+a2x2(e

jw) 
 

)( 0(
wwj
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For a shift in time the out put is the multiplication in frequency. 

F1 

 Time Shift and Frequency Shift 

 x (n-D)=                 e
-jwnD

.x(e
jw

) 

 

F1  Time Shift 

F1  Frequency Shift 

Frequency shift is important in communication engineering because 

shift in frequency does not make any overlap. 



Properties of Fourier Transform 

 In Discrete 

 Time Reversal 

X(-n)                  X(e-jw) 
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j
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 Differentiation in Frequency Domain 

 X(n) is real signal: X(-n)             X*(e
jw

) 

Time Domain. 

F1 
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 Convolution 
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Properties of Fourier Transform 

 In Discrete 

 Parseval’s Theory 
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 The Modulation or Windowing  Domain 

Multiplication in Time Domain but 

convolution in frequency domain 

Where E=energy 

Discrete convolution 
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Chapter- 4 

Z-Transform 
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Z is a complex number, but in Fourier transform ejw      

     is represented in unit circle. And it is similar to laplace     

      transform which is analogue. 

Z is infinite but it is possible to make it convergent. 

For time sequence x(n) the discrete Z-transform is defined as: 

Where Z is complex and 

can be found any where 

Defn. 



Z-Transform 

For sequence x(n)=an  where n0 transformed by Z-transform 
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Properties of Z-Transform 

Linearity 

)()( nbynax 

Let x(n) and y(n) be any two functions and let X(z) and Y(z) be  

their respective transforms. Then for any consonants a and b 

If w(n)=x(n)*y(n) then  
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If the sequence is right sided then ROC is: 
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Relationships between Fourier transform and Z-transform 

Properties of Z-Transform 
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Range of convergence (ROC) for  Z-transform 

If the sequence is left sided then ROC is: 

If the sequence is both sided then the pole is 

outside or inside the ring. It is Like donat shape 

ROC 

ROC 

ROC 
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Inverse of Z-Transform 
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)(naan

Inspection method  

Inverse of Z-Transform 

Partial fraction Expansion method  
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Power series Expansion  

Inverse of Z-Transform 

If you have   
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This was the function which is the result of the above function 



Sampling: 

To use digital signal processing methods on analogue signal, 

it is necessary to represent the signal as a sequence of 

numbers. this is commonly done by sampling the analogue 

signal, denoted Xa(t), periodically to produce the sequence 

X[n]= Xa(nT),   -<n<     where: T=sampling period. 

  

Chapter 3 

Sampling of Continuous-Time Signals 

Block diagram representation of an ideal continuous-to-

discrete (C/D) converter. 

Xa(t), 

T 

X[n]= Xa(nT),    C/D 



Two examples for sampling  
 good                 irreversible 



Fourier transform 

 in analogue : 

Sampling of Continuous-Time Signals 
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Sampling Theorem: If a signal Xa(t) has a band limited Fourier 

transform Xa(j   ), such that Xa(j  )=0 for    ≥2 FN, then Xa(t) can be 

uniquely constructed from equally sampled spaces 

Xa(t), -<n<  if 1/T >2FN.  

Sampling of Continuous-Time Signals 
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If the Fourier transform of Not periodic Xa(t) is defined as: 

 then If          is evaluated for frequency                  then,                  is 

related to                   by: 
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(a) 

Illustration of Sampling: 

Recovery of Analogue  

Signal From Sampling (1) 

)( jX a

)( Tj

a eX 

N


)( Tj

a eX 





(b) 

(c) 

N

NN F2

N
N

T


2

0

0

0

..........

T

2
N

T


2

T

2


1

T

1

T

1

T

2

T

2


T

4


T

4



In the above figures: 

 

Figure  (a) assume that                                               the 

Frequency FN is called  Niguist Frequency.  

 

Figure (b) depicts the case  when 1/T>2FN so that the image of 

transform don’t overlap into the base band  
 

Figure (c) on the other hand shows the case 1/T>2FN.  In this 

case the image centered at 2 /T overlaps into the base band. 

This condition, where a high frequency seemingly takes on the 

identity of the lower frequency is called aliasing. 

NF2

NNa FforjX 2__0)( 

Recovery of Analogue  

Signal From Sampling (2) 

Aliasing can be avoided only if the Fourier transform is band limited and 

The sampling frequency (1/T) is equal to at least twice the Niguist Frequency 

(1/T>2FN) 



Under the condition 1/T > 2FN  the Fourier transform of the sequence of 

sample is proportional to the analogue signal in the base band; i.e., 

   
 

 

 

Using this result, it can be shown that the original signal can be 

related to the sequence of samples by Interpolation Formula 
T




)(
1

)( 


jX
T

eX a

Tj

Recovery of Analogue  

Signal From Sampling (3) 

If the samples of a band limited analogue signal taken at a rate of at least 

twice the Niguist Frequency, it is possible to reconstruct the orignal 

analogue signal using the above equation. 
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General formula for Interpolation.  
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Recovery of Analogue  

Signal From Sampling (4) 

If                                         then it is possible to recover. If the above 

condition is not set, then aliasing will be produced. 

Where:  kC
k Sink  

Sampling Value  

Low Pass Filter 

Band width  

sNNs c c

Ns 

Where:              is 

      Cutoff frequency  

c

NscN 



order to avoid aliasing (distortion)  

 

Recovery of Analogue  

Signal From Sampling (5) 

Condition for anti aliasing 
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Since                     we can write the above equation as: 
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Recovery of Analogue  

Signal From Sampling (5) 
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Fig. (a) Fourier transform of 

       band limited input signal 

Fig. (b) Fourier transform of 

       Sampled input Plotted as 

     function of continuous-time 

     Frequency 

Fig. (c) Fourier transform  

                     of sequence 

       Samples and Frequency 

      Response            of  

   discrete time system  

   Plotted Vs.  
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Decimation/Downsampling/Compressor 

Changing The Sampling Rate Using 

Discrete-Time Processing 

The sampling rate of a sequence can be reduced by “sampling it, i.e., by 

defining a new sequence  
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The process of sampling rate reduction is called Decimation. 

Sampling Rate Reduction by an Integer Factor 

           can be obtained directly  from              by sampling with period  

                    .Furthermore, if                                                   then  

 

Is an exact representation of               if                                              

That is, the sampling rate can be reduced by  a factor of M with out aliasing 

If the original sampling rate was at least M times the Nyquist rate.       

The operation of reducing the sampling rate is called downsampling 

or decimation. 

][nxd

)(txc

MTT ' Nc forjx  __0)(

)(txc



 Sampling 

 period T’=MT 

Representation of Downsampler or discrete-time sampler 

Changing The Sampling Rate Using 

Discrete-Time Processing 
Sampling Rate Reduction by an Integer Factor 
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Changing The Sampling Rate Using 

Discrete-Time Processing 
Sampling Rate Reduction by an Integer Factor 
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Similarly, the discreet-time Furrier Transform of 

     

                                                 With T’=MT is 
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Changing The Sampling Rate Using 

Discrete-Time Processing 
Sampling Rate Reduction by an Integer Factor 
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Equation for Decimation in Frequency Domain when 

r in the above equation is expressed as r =i + KM 

General System for Sampling rate reduction by M 

Low pass filter 

Gain=1 

Cutoff=/M 

M 
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 Sampling 

 period T 
 Sampling 

 period T 

 Sampling 

 period T’=MT 



Changing The Sampling Rate Using 

Discrete-Time Processing 
Frequency-domain illustration of downsampling 
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Fig. (a) Shows the Fourier transform 

           a bandlimited continuous time 

            signal 

Fig. (b) Shows the Fourier transform 

            of the impulse train of  

             samples obtained with  

              sampling Period T. 

Fig. (c) Shows  

            and related to                 

             Fig.(b). 



Changing The Sampling Rate Using 

Discrete-Time Processing 
Continued 

(D) 

(e) 
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Fig. (d) Shows the discrete-time 

         Fourier transform of downsampled 

         sequence when M=2 

Fig. (e) Shows the discrete-time Fourier transform of the downsampled sequence 

           plotted as a function of the continuous time frequency variable  



Interpolation 

Changing The Sampling Rate Using 

Discrete-Time Processing 

Increasing the sampling rate involves operations analogous to D/C  

Conversion. To see this consider a signal           whose sampling rate  

wish to increase by an integer factor of L. If we consider the underlying 

Continuous-time signal          , the objective is to obtain samples 

Increasing the Sampling Rate by an Integer Factor 
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Where                   , from the sequence of samples 

The operation of increasing the sampling rate is referred as 

Upsampling. 
It is clear from  the above two equation that 

,....2,,0 LLn 



Changing The Sampling Rate Using 

Discrete-Time Processing 

The above figure show a system for obtaining    

from using only discreet-time processing.          

General System for Sampling rate Increased L 

Low pass filter 

Gain=1 

Cutoff=/L 

L 
][nx ][nxe

 Sampling 

 period T 
 Sampling 

 period T’=T/L 

 Sampling 

 period T’=T/L 

Increasing the Sampling Rate by an Integer Factor 

][nxi

][nxi

][nx

The System on the left is called Sampling rate Expander or 

simply an expander. It’s out put is 



Changing The Sampling Rate Using 

Discrete-Time Processing 

Or equivalently, 

Increasing the Sampling Rate by an Integer Factor 
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The system on the right (above figure) is a lowpass discrete-

time system with cutoff frequency on Or equivalently, /L and 

gain L. This system plays a role similar to the ideal D/C 

converter. 



Changing The Sampling Rate Using 

Discrete-Time Processing 

The Fourier transform of         can be expressed as 

Increasing the Sampling Rate by an Integer Factor 
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Thus the Fourier transform of the out put of the expander 

Is a frequency scaled version of the Fourier transform of  

the input, i.e.,         is replaced by         so that            is 

Normalized by   
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Changing The Sampling Rate Using 

Discrete-Time Processing 
Frequency-domain illustration of interplation 
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Fig. (a) Shows a bandlimited continuous  

           time Fourier transform 

Fig. (b) Shows the discrete-time 

        Fourier transform of the sequence 

             

Fig. (c) Shows  

            according to the             

           above equation,  

              with L=2.         
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Changing The Sampling Rate Using 

Discrete-Time Processing 
Continued 

(D) 

(e) 
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Fig. (e) Shows the the Fourier transform of the desired signal        We see that  

Can be obtained from                by correcting the amplitude scale from 1/T to 1/T’ 

and by removing all the frequency-scaled images of             except at integer 

multiple of 2. 
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 By combining decimation and interpolation 
it is possible to change the sampling rate 
by noninteger factor. 

 An interpolator which decrease the 
sampling period from T to T/L, Followed by 
Decimator which increase the sampling 
period by M, produce an output sequence         
that has an effective sampling period of 
T’=TM/L. 

(See the following fig.) 

Changing The Sampling Rate  

By a Noninteger Factor 

][~ nxd



Changing The Sampling Rate  

By a Noninteger Factor 

L M 
Low pass filter 

Gain=L 

Cutoff=/L 

L    M 

Low pass filter 

Gain=1 

Cutoff=/M 

Sampling 

 Period: 

T T/L T/L T/L TM/L 

Low pass filter 

Gain=L 

Cutoff=/L 

Min(/L, /M) 

 

Interpolator Decimator 

Sampling 

 Period: T 
T/L T/L 

TM/L 

 System for changing the sampling rate by a noninteger factor. 

Simplified system in which the decimation  

and interpolation filters are combined. 
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Practical Consideration in AD/DA conversion 

Practical Problems: 

  Continuous-time signals are not band limited 

  Ideal lowpass filter is impossible to be realized  

Prefiltering to Avoid Aliasing 

When processing analogue system if the input signal is 

not band limited or if the Nyquist frequency of the input is 

to high, prefiltering is often used to avoid aliasing. 

Prefiltering Sample 

T 

X(n) 

Prefiltering the analogue signal 

to reduce anti-aliasing 



Continued. 

 f Anti-aliasing 

Filter 
C/D 

Discrete- 

time System 
D/C 
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Fig. Use of Prefiltering to avoid aliasing 

For an ideal lowpass anti-aliasing filter (above fig.) behaves as a linear time- 

invariant system with frequency response given by the following equation even  

When            is not bandlimited.           
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In practice, the frequency response               can not be ideally bandlimited, but             

Can be made small for                 so that the aliasing is minimized. In this case, the 

Overall frequency response of the system in the above fig. would be approximately           

)( jHaa )( jHaa

,/T

)()()( Tj

aaeff eHjHjH 



Chapter-7 

Digital Filter Design 

Filter can be defined as a system that modifies certain 
frequencies relative to others. 

Digital filter is a linear shift invariance system (LIS). 

The designing filter involves the following stages: 

1) Desired characteristics (Specification)  of the system. 

2) Approximation of the specification using a casual 
discrete-time system. 

3) The realization of the system (building the filter by finite 
arithmetic computation. 

 



Design of Discrete-Time IIR Filters From 

Continuous-Time Filters 

The traditional approach to the design of discrete-time IIR  

filters involves the transformation of continuous-time filter 

into a discrete-time filter meeting prescribed specification. 

1. Filter Design by Impulse Invariance 

In the impulse invariance design procedure the impulse response of the 

discrete-time filter is chosen as equally spaced samples of the impulse 

response of the continuous-time filter; i.e. 

)(][ dcd nThTnh  Where: Td=sampling interval 

Note: Impulse invariance techniques have problem of aliasing 

Analogue filter can be changed to digital filter by sampling the 

impulse response h(t) of analogue. (concept of impulse invariance)  

Analogue Digital Filter 
h(n) h(t) 



Continued.. 

To develop the transformation (from continuous-time to discrete-time), let 

us consider the simple function of the continuous time filter expressed in 

terms of partial fraction expression, as: 
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The Impulse response of the discrete-time filter obtained by sampling               is 
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Continued.. 
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The system function H (z) of the discrete-time filter is therefore given by 
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 This technique have in distortion of frequency axis. 

  Avoid the problem of aliasing. 

2. Bilinear Transformation 

With Hc(s) denoting the continuous-time system function and H(z) the discrete-time 

System function, the bilinear transformation corresponds to replacing s by  

That is, 
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FIR Design by Window 

IIR filter design are based on transformation of continuous-

time IIR system in to Discrete time system. 

In contrast, FIR filters are almost entirely restricted to 

discrete-time implementations.  

The design technique for FIR filters are based on directly 

approximating the desired frequency response of the 

discrete-time system,  

This method generally begins with an ideal desired frequency response 

that can be represented as: 
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The simplest method of FIR filter design is called the  

Window method. 



Continued… 

Where Hd[n] is the corresponding impulse response 

sequence, which can be expressed in terms of Hd(ejw) as 
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To obtain a casual FIR filter from  Hd[n] is to define a new 

system with impulse response h[n] given by 
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Continued… 

More generally we can represent h[n] as the product of 

desired impulse response and a finite-duration 

“window” w[n]; i.e.’ 

],[][][ nwnhnh d

Where for simple truncation as in above equation the 

window is the rectangular window 
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Properties of commonly used windows 

Some commonly used windows are defined by the following equations: 
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The Kaiser Window Filter Design Method 

The Kaiser window is defined as 
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Where  =M/2, and Io(.) represents the zero-order 

modified Bessel function of the first kind. 
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Properties of Linear phase FIR Filter 

The Shape of the impulse response defined by Equation. 

The frequency response of the above system is 
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Algorithmic Procedure For The Design 
Of FIR Filters With Generalized Linear 

Phase 

In designing a causal Type I linear phase FIR filter, it is convenient first to 
consider the design of a zero-phase filter, i.e., one for which 

 

and then to insert sufficient delay to make it causal. 
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Algorithmic Procedure For The Design 
Of FIR Filters With Generalized Linear 

Phase 

A Type II causal filter is one for which h[n]=0 outside the range  

, with filter length (M+1) even, I.e.  
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Algorithmic Procedure For The Design 
Of FIR Filters With Generalized Linear 

Phase 

Type III 
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Algorithmic Procedure For The Design 
Of FIR Filters With Generalized Linear 

Phase 
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